

An implementation of the X-FEM for Eulerian solid-mechanics

MULTIMAT Arcachon, France September 7, 2011

T. Voth, J. Mosso, J. Niederhaus and Marlin Kipp <u>tevoth@sandia.gov</u> Sandia National Laboratories, NM

We use Eulerian approach but mixed material cells can be problematic:

- Multi-material problems with significant vorticity/distortion:
 - Lagrangian approaches tangle.
 - Arbitrary Lagrangian Eulerian (ALE) can't merge materials without topology changes.

Eulerian approach produces mixed-cells.

 Current mixed-cell approaches generally assume materials are "well" mixed:

- Assume "equilibrated" state
- Single velocity/displacement field
- Lack of intra-element interfaces

Lagrangian step requires closure model(s) for mixed-cell properties:

$$\mathbf{a}^{n} = \mathbf{M}^{-1} \begin{bmatrix} \mathbf{f}_{hg}^{n} + \mathbf{f}_{ext}^{n} - \int_{\Omega} \mathbf{B}^{t} \boldsymbol{\sigma}^{n} \end{bmatrix}$$

$$\mathbf{v}^{n+1/2} = \mathbf{v}^{n-1/2} + \overline{\Delta t} \mathbf{a}^{n} \quad \mathbf{x}^{n+1} = \mathbf{x}^{n} + \overline{\Delta t} \mathbf{v}^{n+1/2}$$

$$\mathbf{D}^{n+1/2} = \frac{1}{2} (\mathbf{L}^{t} + \mathbf{L})^{n+1/2} \quad \mathbf{D}_{m} = \mathcal{F} (\mathbf{D}, etc...)$$

$$\boldsymbol{\sigma}_{m}^{n+1} = \mathcal{M}_{m} (\boldsymbol{\sigma}_{m}^{n}, \mathbf{D}_{m}^{n+1/2}, etc...) \quad e^{n+1} = e^{n} + \overline{\Delta t} m^{-1} \int_{\Omega} \boldsymbol{\sigma}_{m}^{n} : \mathbf{D}_{m}^{n+1/2}$$

$$\boldsymbol{\sigma} = \mathcal{G} (\boldsymbol{\sigma}_{m}, etc...)$$

Problem	Expected	Predicted
\overline{v}	\overline{v}	v

Why X-FEM:

- Mechanism for intra-element material interfaces.
- Retains base FEM convergence properties.
- Large literature base for X-FEM in context of large deformation, explicit Lagrangian mechanics.
- Beginning to be adapted to "operator-split" multimaterial Eulerian solid-mechanics [VB06; DLZRM10]:
 - explicit (central difference) Lagrangian solve,
 - followed by data transfer "remap" to "better" mesh.
- Can be incorporated into existing explicit centraldifference strength/hydrodynamics codes (ALEGRA).

We follow the XFEM decomposition approach [HH04, SAB06] ...

Multi-material enriched element equivalent to multiple single-material elements:

$$u^{h}(\mathbf{x}) = \sum_{I} u_{I}^{0}(\mathbf{x}) N_{I}(\mathbf{x}) + \sum_{m} \sum_{J} u_{J}^{m} N_{J}(\mathbf{x}) H_{m}(\mathbf{x})$$
$$u^{h}(\mathbf{x}) = u_{A}^{h}(\mathbf{x}) + u_{B}^{h}(\mathbf{x})$$

$$u_m^h(\mathbf{x}) = \sum_J u_J^m N_J(\mathbf{x}) H_m(\mathbf{x})$$

Explicit central difference discretization requires care for stability ...

$$\mathbf{Ma}^n = \mathbf{f}_{int}^n + \mathbf{f}_c$$

• lumped mass matrix with uniform partitioning of element mass to nodes [MRMCB08]

$$\mathbf{M}_{m}^{e} = \left(\rho_{m}^{e} A^{e} \phi_{m}^{e} / 4\right) \mathbf{I}_{8 \times 8} \qquad \phi_{m}^{e} = A_{m}^{e} / A^{e}$$

• matched with gradient operator mean quadrature [SAB06] $\mathbf{\bar{B}} = \int_{\Omega} \mathbf{B} d\Omega / A_e \qquad f_{int,m} = \mathbf{\bar{B}}^t \overline{\sigma}_m A^e \phi_m^e$

and constraint enforcement between X-FEM interfaces:

$$\mathbf{f}_{c} = ?$$

We understand the issues but use "nodesegment-like" Lagrange Multipliers...

- ... in an attempt to:
 - minimize interpenetration of X-FEM interfaces,
 - and retain a finite stable time-step.
- Other options for explicit X-FEM:
 - Merge (small time step) [VB06]
 - Mortar lagrange multiplier (need care for LBB)
 - Penalty (overlap, mass modifications) [DLZRM10]
 - Nitsche's (overlap, mass modifications) [AHD11]
 - Vital Vertices LM [BMW09, HAD11]
- ... so we use it anyway for it's practicality and economy.

Forward Increment Lagrange Multiplier approach [CTK91] ...

Algorithm:
$$\mathbf{v}_{0}^{n+1/2} = \mathbf{M}^{-1}\mathbf{f}^{n}$$

$$\lambda_{i+1} = \lambda_{i} + \mathbf{H}\mathbf{r}_{i} \quad \mathbf{H} \approx (\mathbf{G}\mathbf{M}^{-1}\mathbf{G}^{t})$$

$$\mathbf{v}_{i+1}^{n+1/2} = \mathbf{M}^{-1}(\mathbf{f}^{n} - \Delta t\mathbf{G}^{t}\lambda_{i+1})$$

Algorithm:

$$\mathbf{v}_0^{n+1/2} = \mathbf{M}^{-1}\mathbf{f}^n$$

$$\mathbf{r}_i = \mathbf{G}\mathbf{v}_i^{n+1/2}$$

$$\lambda_{i+1} = \lambda_i + \mathbf{H} \mathbf{r}_i \quad \mathbf{H} \approx (\mathbf{G} \mathbf{M}^{-1} \mathbf{G}^t)$$

$$\mathbf{v}_{i+1}^{n+1/2} = \mathbf{M}^{-1} \left(\mathbf{f}^n - \Delta t \mathbf{G}^t \lambda_{i+1} \right)$$

No additional limitations to stable time step [DLZRM10,VMR10]

Data transfer can be accomplished in a number of ways:

- With the goal of preserving some key features:
 - Conserve mass, momentum and internal energy.
 - Do not create new minima and maxima (monotonicity).
 - Volume fractions sum to one after remap.
- Options include:
 - Interpolation (violates conservation) [DLZRM10]
 - Projection methods (violates conservation and monotonicity)
 - Geometric intersection with Van Leer limiting
 - conservation is built in.
 - limiting preserves monotonicity.

Geometric intersection with Van Leer limiting in two dimensions (1):

Taylor Series provides functional form on donor mesh:

$$f(\mathbf{x}) = \overline{f_e} + (\mathbf{x} - \mathbf{x}_e)^t \mathbf{G}_e + \frac{1}{2} (\mathbf{x} - \mathbf{x}_e)^t \mathbf{H}_e (\mathbf{x} - \mathbf{x}_e)^t - \chi$$
first-
second-
third-order

 χ provides conservation:

$$\overline{f}_e A_e = \int f(\mathbf{x}) d\Omega_e \Rightarrow \chi = \frac{1}{2A_{e \cap m}} \int (\mathbf{x} - \mathbf{x}_e)^t \mathbf{H}_e (\mathbf{x} - \mathbf{x}_e^t) d\Omega_e$$

• Gradients/hessians computed as [DK87]:

$$\mathbf{G}_n = \frac{1}{A_n} \oint \overline{f}_e \ d\mathbf{S}_n$$

$$\mathbf{G}_e = \frac{1}{A_e} \sum_{n} A_{n \cap e} \mathbf{G}_n$$

$$\mathbf{H}_e = \frac{1}{A_e} \oint \mathbf{G}_n \, d\mathbf{S}_e$$

Geometric intersection with Van Leer limiting in two dimensions (2):

Scale gradient to enforce monotonicity:

$$f(\mathbf{x}) = \overline{f}_e + \mathbf{s}_G (\mathbf{x} - \mathbf{x}_e)^t \mathbf{G}_e$$

$$s_{G,r} = \begin{cases} 1 & \text{if } (f_r - \overline{f_2})(\overline{f_3} - f_r) \ge 0\\ (\overline{f_3} - \overline{f_2})/(f_r - \overline{f_2}) & \text{otherwise} \end{cases}$$

$$s_{G,\ell} = \begin{cases} 1 & \text{if } (f_{\ell} - \overline{f_2})(\overline{f_1} - f_{\ell}) \ge 0\\ (f_1 - f_2)/(f_{\ell} - f_2) & \text{otherwise} \end{cases}$$

$$s_G = \max\left(\min(s_{G,\ell}, s_{G,r}), 0\right)$$

If third-order also scale hessian terms:

$$f(\mathbf{x}) = \overline{f}_e + s_G (\mathbf{x} - \mathbf{x}_e)^t \mathbf{G}_e + \frac{s_H}{s_H} \left[(\mathbf{x} - \mathbf{x}_e)^t \mathbf{H}_e (\mathbf{x} - \mathbf{x}_e)^t - \chi \right]$$

Geometric intersection with Van Leer limiting in two dimensions (3):

• Integrate function over donor-acceptor intersection element and accumulate to acceptor [D83].

$$\overline{f}_{A} = \frac{1}{A_{A}} \sum_{D} \int_{A_{D} \cap A_{A}} f_{D}(\mathbf{x}) dA = \frac{1}{A_{A}} \sum_{D} \oint_{\Gamma_{AD}} \mathbf{g}_{D}(\mathbf{x}) d\mathbf{S}_{AD}$$

$$\nabla^{t} \mathbf{g}_{D}(\mathbf{x}) \equiv f_{D}(\mathbf{x})$$

 Further restrict integral to filled region of donor mesh.

Use interface reconstruction rather than level-set approach: [DVMR08]

- Interfaces rebuilt after remap step.
- Using VOF approach:
 - Compute material volume-fraction gradients.
 - Reposition interface along normal to match volume.
 - Remove material from cell.

Provides enhanced results for simple onedimensional problem [CTK91]...

... and simple two-dimensional problems ...

and accuracy comparable to Lagrangian for more complex problems ...

... as well as comparable rates of convergence ...

For this problem remap order has little effect on accuracy/rate-of-convergence ...

More complicated problems demonstrate the utility/advantages of the approach ...

High-velocity impact difficult for Lagrangian and unrealistic for Eulerian are possible with X-FEM.

Conclusions:

- Developing capability to more accurately treat multimaterial cells in an "operator-split" ALE context.
- Capability builds on existing ALE infrastructure.
- Uses X-FEM ideas to provide provide unique kinematics for each material in a cell.
- Uses interface reconstruction rather than level-set ideas to address conservation and complex interface intersections.
- Employs higher-order, conservative remapping algorithms. Advantages are unclear at this point.
- Demonstrates good convergence/accuracy for problems investigated here.

(Incomplete) References:

AHD11: Annavarapu et al., IJNME, submitted.

BMW09: Bechet et al., IJNME 78, 931.

CKT91: Carpenter et al., IJNME 32, 103.

D83: Dukowicz, JCP 54, 411.

DK87: Dukowicz and Kodis, SIAM J. Sci Stat Comput 8, 305.

DLZRM10: Dubois et al., Comp Mech 46, 329.

DMRV08: Dolbow et al., CMAME 197, 439.

HAD11: Hautefeuille et al., IJNME, in revision.

HH04: Hansbro and Hansbro, CMAME 193, 3523.

MRMCB08: Menouillard et al., IJNME 74, 447.

SAB06: Song et al., IJNME 67, 868.

VB06: Vitali and Benson, IJNME 67, 1420.

VMR10: Voth et al., USNCCM10, Columbus.